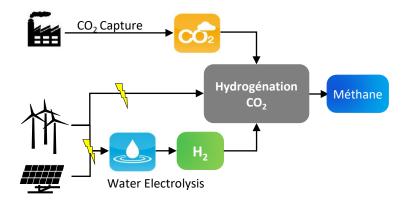
Valorisation of CO₂ into methane

Power-to-gas, conversion of renewable energy into hydrogen gas, is one of the main challenges for the energy transition to succeed. The reaction of hydrogen transformation into methane faces two technological issues:


- · Amount of energy needed for the reaction
- Catalysts quality

DESCRIPTION*

- Production and use of ferromagnetic nanoparticles used for the hydrogenation of $\rm CO_2$ and $\rm H_2$ to form $\rm CH_4$

 $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$ (Sabatier reaction)

- Nanoparticles activation through magnetic hyperthermia (i.e. using a magnetic field), which enable instant and localized heating and avoid problems due to thermal inertia
- Nanoparticles geometry and materials optimized for heat production

≣ TECHNICAL SPECIFICATIONS

Activation	Magnetic Hyperthermia (magnetic field)				
Catalysts	Metal Nano Catalysts with strong catalytic activity				
Results obtained with lab prototype	Yield: 100% conversion Magnetic Field: 25 mT Flow Rate: 100mL/min				

COMPETITIVE ADVANTAGES

- High selectivity
- Yield closed to 100%
- Domestic use possible
- Adapted to intermittent renewables electricity production

APPLICATIONS

- CO₂ Capture and valorization
- Smart Grid and Power to Gas solutions
- Hydrogen transformation

INTELLECTUAL PROPERTY

Patent pending

• DEVELOPMENT STAGE

• Technology validated at lab level

			<u> </u>						
1	2	3	4	5	6	7	8	9	

- At laboratory scale:
- Catalysts synthesis at the nanoparticle level
- CO₂ Hydrogenation reaction validated in batch reactors (<50cL)

• Nanostructures and Organometallic Chemistry Team - Toulouse, France

CONTACT

T. +33 (0)5 62 25 50 60 systemes@toulouse-tech-transfer.com www.toulouse-tech-transfer.com